Isotonic regression in general dimensions
نویسندگان
چکیده
We study the least squares regression function estimator over the class of real-valued functions on [0, 1]d that are increasing in each coordinate. For uniformly bounded signals and with a fixed, cubic lattice design, we establish that the estimator achieves the minimax rate of order n−min{2/(d+2),1/d} in the empirical L2 loss, up to poly-logarithmic factors. Further, we prove a sharp oracle inequality, which reveals in particular that when the true regression function is piecewise constant on k hyperrectangles, the least squares estimator enjoys a faster, adaptive rate of convergence of (k/n)min(1,2/d), again up to poly-logarithmic factors. Previous results are confined to the case d ≤ 2. Finally, we establish corresponding bounds (which are new even in the case d = 2) in the more challenging random design setting. There are two surprising features of these results: first, they demonstrate that it is possible for a global empirical risk minimisation procedure to be rate optimal up to poly-logarithmic factors even when the corresponding entropy integral for the function class diverges rapidly; second, they indicate that the adaptation rate for shape-constrained estimators can be strictly worse than the parametric rate.
منابع مشابه
Application of Isotonic Regression in Predicting Business Risk Scores
an isotonic regression model fits an isotonic function of the explanatory variables to estimate the expectation of the response variable. In other words, as the function increases, the estimated expectation of the response must be non-decreasing. With this characteristic, isotonic regression could be a suitable option to analyze and predict business risk scores. A current challenge of isotonic ...
متن کاملAn Approach to Computing Multidimensional Isotonic Regressions
This paper gives an approach for determining isotonic regressions for data at points in multidimensional space, with the ordering given by domination. Recent algorithmic advances for 2-dimensional isotonic regressions have made them useful for significantly larger data sets, and here we provide an advance for dimensions 3 and larger. Given a set V of n d-dimensional points, it is shown that an ...
متن کاملEfficient regularized isotonic regression with application to gene–gene interaction search
Isotonic regression is a nonparametric approach for fitting monotonic models to data that has been widely studied from both theoretical and practical perspectives. However, this approach encounters computational and statistical overfitting issues in higher dimensions. To address both concerns, we present an algorithm, which we term Isotonic Recursive Partitioning (IRP), for isotonic regression ...
متن کاملAlgorithms for L∞ Isotonic Regression
This paper gives algorithms for determining L∞ weighted isotonic regressions satisfying order constraints given by a DAG with n vertices and m edges. Throughout, topological sorting plays an important role. A modification to an algorithm of Kaufman and Tamir gives an algorithm taking Θ(m log n) time for the general case, improving upon theirs when the graph is sparse. When the regression values...
متن کاملOptimal rates for total variation denoising
Motivated by its practical success, we show that the 2D total variation denoiser satisfies a sharp oracle inequality that leads to near optimal rates of estimation for a large class of image models such as bi-isotonic, Hölder smooth and cartoons. Our analysis hinges on properties of the unnormalized Laplacian of the two-dimensional grid such as eigenvector delocalization and spectral decay. We ...
متن کاملRisk Bounds in Isotonic Regression
Nonasymptotic risk bounds are provided for maximum likelihood-type isotonic estimators of an unknown nondecreasing regression function, with general average loss at design points. These bounds are optimal up to scale constants, and they imply uniform n−1/3-consistency of the p risk for unknown regression functions of uniformly bounded variation, under mild assumptions on the joint probability d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017